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Simulation of Flow Through a Two- 
Dimensional Random Porous Medium 

U. Brosa 1'2 and D.  Stauffer 1'3 
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The cellular automata approximation of two-dimensional hydrodynamics is 
used to model flow between randomly placed, partially overlapping circles. The 
flow resistance is first roughly proportional to the number of circles and then 
increases more strongly for higher numbers of such obstacles. 
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Cellular au tomata  (1) have been studied intensively in particular for t, wo- 
dimensional hydrodynamiesJ  2~ In these lattice gases, one lets particles 
move with unit velocity along the bonds  of a triangular lattice, or they rest 
on one of the sites. Two particles moving toward the same site scatter there 
according to the usual conservat ion laws. Several detailed descriptions of  
the algori thm have been published. (3 5~ Flow around  obstacles (6'7) was 
simulated in agreement  with experimental findings. The method seems 
to be particularly suitable for flow at low velocities a round  complicated 
boundaries,  like porous  membranes.  (8~ 

Thus the flow of water or oil through a porous  medium like sand has 
been mentioned (9) as an example where this lattice gas approximat ion  is 
better than other  methods;  and various simulations were published or  
announced.  (9-13) Since this tr iangular lattice is restricted to two dimensions, 
we prefer to work with a well-defined and reproducible model medium, and 
do not  use pictures of cuts through three-dimensional natural  porous  
media. Thus, following the simulations of a flow around  a cylinder, (6'7) 
we now place many  parallel cylinders (i.e., circles in two dimensions) 
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randomly on the lattice. All circles have the same radius, and they are 
allowed to overlap. 

The fluid flow is thought to happen within a channel. Thus the lattice is 
placed between two parallel horizontal lines, and the fluid flows from left to 
right, according to a parabolic Poiseuille velocity profile if no obstacles are 
present. Reflections on the solid boundaries, and the pressure exerted by the 
fluid on the cylindrical obstacles, are calculated as in ref. 6; our algorithm (5~ 
reaches 30 sites updated per microsecond on one Cray-YMP processor. On 
the left (upstream) end of the sample, we took as a boundary condition a 
parabolic velocity profile. For  every configuration of cylinders, eight lattice 
gases were simulated differing only in the random numbers used for the 
initial velocity distribution. We worked with unit density and with the 
same scattering rules as in ref. 5; thus the viscosity is about 1/2 in dimen- 
sionless units, as given in ref. 5 for typical system sizes. 

The circles were allowed to overlap with and exceed the upper and 
lower boundaries, but were restricted to be in the center half of the 
horizontal extension of the lattice, in order to have the two ends of the 
channel free from obstacles. (Rothman (1~ instead used square obstacles 
which were forced to be well separated.) We used lattice sizes 9 0 0 .  300, 
2000 �9 666, 3000 �9 1000, 4800 �9 1600, and made a test run of a few seconds 
only for 6900 �9 2300; for 300 �9 100 lattices the fluctuations were too large. 
All circles had a diameter of 2% of the horizontal lattice extension, i.e., 40 
for 2000 �9 666 lattices. 

In principle, the flow velocity should be as small as possible, since a 
maximum unit velocity is reached if all molecules in a region move in the 
same direction. Thus in a narrow neck between two circles the algorithm 
is inaccurate if the fluid flow velocity away from the neck is not much 
smaller than unity. Actually, we avoid here the critical phenomena near the 
percolative phase transition (14/ and work under conditions where there is 
still lots of room for flow. Thus the systematic effects from a variation of 
the initial velocity amplitude were of the order of the statistical fluctua- 
tions. Forces and final velocities were roughly proportional to the initial 
velocity in agreement with Darcy's law. (~~ Thus we took 1/4 as the initial 
maximum fluid velocity in the center of the "channel". 

Boundary conditions were taken similar to ref. 6: The leftmost lattice 
layer was occupied with particles such that their average velocity points to 
the right and follows a Poiseuille profile. The rightmost layer was occupied 
with velocities taken from many layers further upstream. For intermediate 
porosities the average velocity far from the ends and obstacles thus decayed 
in time until it settled to a stationary value about which it fluctuated. The 
pressure behaved similarly. Thus we averaged over the latter half of the 
simulation in order to avoid the initial nonequilibrium phenomena. 
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The actual average flow velocity ( v ) ,  which can be much smaller than 
initially, was determined by summing over the particle velocities at 
columns 61-120 of our lattices. The pressure was calculated as in ref. 6 
through the total force f exerted by the momentum transfer from the 
particles to the obstacles. The flow resistivity is then proportional to 
f / (v) ,  and the permeability to the reciprocal ratio (v) / f  The porosity 
( =  1 -  filling factor) is the fraction of open area and is exp(- l rR2N/Area)  
because of the overlap of the circles. This porosity shrinks from 1 to 1/2 in 
the range of Fig. 1. 

The forces and velocities in the model are dimensionless and could be 
translated into material-dependent units. To get material-independent 
results, we normalize the results through the data found for a single cylin- 
der in the center of the lattice. For  a small number of cylinders, the force 
at fixed velocity is proportional to the number of obstacles. Our scaled per- 
meability Ps is thus defined as the ratio of the average stationary velocity 
( v )  to the force f,  multiplied by the number N of cylinders and normalized 
by the same ratio for the single cylinder in the lattice center: 

Ps oc N(v) / f  

For small N this scaled permeability should be a constant near unity, and 
for large N near the percolation threshold it should go to zero. 

Usually we made 2400 time steps and averaged over the last 1200 of 
them, evaluating the configurations every 200 time steps. In some cases, 
also two and four times longer runs were made to see that Ps no longer 
depends on time for 2000 ,666  lattices. For large N or for lattice sizes 
3000 * 1000, equilibrium has not yet settled after 2400 iterations, and 4800 
steps were used. (One reason why these relatively ~ short times may suffice 
is that, as in ref. 6, initially the whole lattice was filled with a Poiseuille 
flow as was used later for the upstream boundary condition. Thus, viscous 
friction starts in the porous medium already at the beginning of the simula- 
tion, not when a shock wave from the upstream end has traveled through 
the medium. The latter effect takes more time. (19)) 

Our numerical results give a scaled permeability which remains of 
order unity even for a relatively large number of circles when overlaps and 
close-by circles occur. Figure 1 shows an example with 50 circles, as well as 
our main results. Only when 100 and more circles are spread over our 
2000 , 666  lattice is the scaled permeability reduced appreciably. The dif- 
ferent data in Fig. 1 for the same lattice size and the same N correpond to 
different distributions of obstacles and give an impression of the statistical 
errors. For the smallest lattices our circle radius is only 9 and thus only of 
the order of the mean free path determined by Rothman(l~ for the two 
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Fig. 1. Scaled permeability as a function of the number N of circles; geometry as in the top 
part. (The units are chosen such that the scaled permeability is one for a single circle in the 
center of the lattice and is on average 1.5 for well-separated obstacles.) Dots: 900 .  300, 
crosses: 2000 �9 666, circles: 3000 * 1000, star: 4800 �9 1600. The percolation threshold (~4) is near 
N = 550. The upper right inset shows a model of porous medium flow with 50 solid circles of 
radius 20 placed randomly in a 2000 * 666 triangular lattice; no circles were placed close to 

the ends. 

larger lattices, with circle radius 20 and 30, the results are not much 
different. (Our size dependence presumably is too large to be explained by 
the logarithmic divergence of the two-dimensional viscosity. (]8) 

It would be nice if model experiments (]5) analogous to these computer 
simulations would be made in two dimensions to test their accuracy; the 
overall behavior of our data seems reasonable. The fractal behavior near 
the percolation threshold, and scaling laws for the dependence, still need to 
be investigated. A modification of the algorithm, to keep track of the iden- 
tity of single particles, will be needed to study hydrodynamic dispersion. (16~ 

From the theoretical point of view it would be nice to have analytic 
theories similar to those of ref. 17 which give the leading nontrivial order 
of the cooperation between different obstacles. For porosities p above 3/4 
our figure gives a permeability roughly proportional to (p-2/3)/(1-p): 
How to explain our factor p -  2/3? 

Note .  Since the completion of this work, M. Sahimi and D. Stauffer 
(Chem. Eng. Sei., in press) have applied the method to layered porous 
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media ;  a n d  G . A .  K o h r i n g  has i m p r o v e d  the speed by  a factor  of six 

(J. Stat .  Phys.  80:411 (1991) a n d  inves t iga ted  the size d e p e n d e n c e  of p o r o u s  

pe rmeab i l i t y  [J.  Phys.  ( P a r i s ) I I : L 8 7  (1991)] .  
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